ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Non-Equivalent Norms on $C^b(K)$

Journal: Sahand Communications in Mathematical Analysis (Vol.17, No. 4)

Publication Date:

Authors : ;

Page : 1-11

Keywords : Normed vector space; Equivalent norm; Zero-product preserving map; Strongly zero-product preserving map;

Source : Download Find it from : Google Scholarexternal

Abstract

‎Let $A$ be a non-zero normed vector space and let $K=overline{B_1^{(0)}}$ be the closed unit ball of $A$. Also, let $varphi$ be a non-zero element of $ A^*$ such that $Vert varphi Vertleq 1$. We first define a new norm $Vert cdot Vert_varphi$ on $C^b(K)$, that is a non-complete, non-algebraic norm and also non-equivalent to the norm $Vert cdot Vert_infty$. We next show that for $0neqpsiin A^*$ with $Vert psi Vertleq 1$, the two norms  $Vert cdot Vert_varphi$ and $Vert cdot Vert_psi$ are equivalent if and only if $varphi$ and $psi$ are linearly dependent. Also by applying the norm $Vert cdot Vert_varphi $ and a new product `` $cdot$ '' on $C^b(K)$, we present the normed algebra $ left( C^{bvarphi}(K), Vert cdot Vert_varphi right)$. Finally we  investigate some relations between strongly zero-product preserving maps on $C^b(K)$ and $C^{bvarphi}(K)$.

Last modified: 2021-11-03 14:29:36