ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Detection to trace aluminum ion of pharmaceutical wastewater using synthesis of Schiff-based chemosensor

Journal: Environmental Health Engineering and Management Journal (Vol.8, No. 4)

Publication Date:

Authors : ;

Page : 309-318

Keywords : Environment; Water; Pollution; Poisoning; Alzheimer’s; Parkinson’s dementia; Disease; Pharmaceutical; Aluminium; Fluorescence chemosensor; India;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Background: The aim of this research was to develop a fluorogenic sensor for Al3 + ions, which have been identified as a possible food and drinking water pollutant by the WHO and considered to be harmful to human health. Methods: The sensing mechanism was based on excited-state intramolecular proton transfer, with the intramolecular rotation restriction occurring after binding with the analyte. The probe attaches Al3 + selectively and emits strong emission in 4:1 H2O/MeOH (v/v) solution while irradiated at 400 nm in the presence of a wide number of cations, acting as a “turn-on” fluorescence chemosensor. The range of detection for Al3 + is 3.3 nM (3 method), which is more than 200 times more responsive than the WHO suggested limit of 7.4 mM (3σ method). Mass spectra, job plot, and Benesi-Hildebrand plot were used to determine the formation of the 1:1 metal-to-ligand complex. Results: Aluminum (Al) ion content in effluent obtained from the pharmaceutical sector is 0.381 mM, which is a trace amount. A separate in vitro experiment indicates that the probe can precisely perceive Al3 + ions in a cell line. The sensor-based method is developed to detect 3.3 nM of Al3 + ions, which is significantly less than the WHO max. Conclusion: The probe to detect Al3 + ions in live cells. HL becomes a flexible sensor for recognizing intracellular Al3 + in human liver cancer cell line Hep G2 and human lung fibroblast cell lines by fluorescence cell imaging procedures, and the probe's non-toxicity has been proven by MTT tests up to 100M.

Last modified: 2021-12-13 16:17:02