Research of machine learning methods in the problem of identification of blood cells
Journal: Scientific and Technical Journal of Information Technologies, Mechanics and Optics (Vol.21, No. 6)Publication Date: 2021-12-24
Authors : Elagina E.A. Margun A.A.;
Page : 903-911
Keywords : support vector machine; SVM; convolutional neural networks; CNN; machine learning; deep learning;
Abstract
The development of the medical imaging field is becoming a significant challenge due to the growing need for automated, fast, and efficient diagnostics. Traditionally, blood cells are counted by using a hemocytometer along with other laboratory equipment and chemicals, which is a laborious task. The paper investigates the application of machine learning methods to the identification and classification of blood cells, which allow increasing the recognition rate without deteriorating quality. A comparative analysis of methods for solving the problem of recognizing blood cells based on artificial intelligence approaches is carried out. The paper uses support vector machine, k-nearest neighbors' algorithm, deep learning (convolutional neural network), and forward propagation neural network. A set of images with cell samples was selected as the initial data for comparison. A comparative analysis of the quality of the considered algorithms was performed on a set of training data with more than 3000 images. It is shown that a program that implements artificial intelligence methods provides a cell recognition time within 4-6 seconds when using an office personal computer, which is significantly less than the time spent by medical workers on one study of a biomaterial. The implementation of the presented results makes it possible to automate the process of studying a biomaterial, reduce the time for conducting and obtaining the result of the analysis of whole blood cells (identification and counting), lessen the influence of operator errors on the result, unload computing resources, thereby increases the efficiency of digital medicine.
Other Latest Articles
- Stochastic software testing for vulnerability analysis
- An approach to the identification of the state of elements in cyber-physical systems based on principal component analysis
- Measurements of heat capacity and thermal conductivity of β-Ga2O3 and β-(AlxGa1–x)2O3 bulk crystals grown by the Czochralski method
- Impact of magnesium oxide concentration and yttrium-aluminum garnet stoichiometry deviation on the microstructure and optical transmission of YAG-based ceramics
- Different III-V semiconductor nanowires with quantum dots on silicon: growth by molecular-beam epitaxy and properties
Last modified: 2022-01-10 19:56:28