A pratical implementation of deep neural network for facial emotion recognition
Journal: Science, Engineering and Technology (Vol.2, No. 1)Publication Date: 2022-04-30
Authors : Ferroudja Djellali; Emir Deljanin;
Page : 38-43
Keywords : ;
Abstract
People's emotions are rarely put into words, far more often they are expressed through other cues. The key to intuiting another's feelings is in the ability to read nonverbal channels, tone of voice, gesture, facial expression and the like. Facial expressions are used by humans to convey various types of meaning in a variety of contexts. The range of meanings extends from basic, probably innate, social-emotional concepts such as "surprise" to complex, culture-specific concepts such as "neglect". The range of contexts in which humans use facial expressions extends from responses to events in the environment to specific linguistic constructs in sign languages. In this paper, we will use an artificial neural network to classify each image into seven facial emotion classes. The model is trained on a database of FER+ images that we assume is large and diverse enough to indicate which model parameters are generally preferable. The overall results show that, the CNN model is efficient to be able to classify the images according to the state of emotions even in real time.
Other Latest Articles
- Bosnia and Herzegovina market research on the use of autonomous vehicles and drones in postal traffic
- Infrastructure costs and benefits of European high-speed rail
- Information networks – concept, classification and application
- Efficiency-complexity evaluation methods of routing algorithms in mobile ad hoc networks
- Use of information and communication technologies in social work institutions in extraordinary circumstances
Last modified: 2022-06-21 07:15:05