Mechanical behavior analysis of a clamped-clamped micro-beam with stepped viscoelastic layer under electrostatic excitation
Journal: Journal of Computational Applied Mechanics (Vol.51, No. 2)Publication Date: 2020-12-01
Authors : Maryam Ghalenoei; Mehdi Zamanian; Behnam Firouzi; Seyed Ali Asghar Hosseini;
Page : 486-497
Keywords : MEMS; Viscoelastic; microbeam; Galerkin;
Abstract
In this study, static deflection, natural frequency and nonlinear vibration in bi-layer clamped-clamped microbeam are investigated. In this configuration, the second layer is the viscoelastic layer which covers a part of the microbeam length. This model is the main element of many chemical microsensors. The governing equations of motion for the system are obtained by Lagrange method and discretized using the assumed mode method. The non-uniform micro-beam modes shape are used as the comparison function in the assumed mode method. Initially, considering the DC voltage, system static response and natural frequency around the static position are obtained. Then, considering the AC voltage, the dynamic response around the dynamic position is calculated by both analytical (perturbation method) and numerical methods (Rung-kutta) and compared for validation purposes. The effect of different geometrical parameters of the viscoelastic layer on the static and dynamic behaviors of the system is also analyzed. The results indicate that the dimensions and location of the viscoelastic layer significantly affect the static and dynamic behavior of the system. Therefore, by using this property and considering the application of microsensors, their behaviors can be made efficient. For sensors operating based on resonance frequency shift, the optimum shift of frequency state can be obtained by varying the dimensions and position of the viscoelastic layer. Moreover, time of response can be optimized when the system is operating based on changes in the capacity of a capacitor. The results also represent that convergence in the assumed mode method used in this paper is feasible even using a single mode, whereas in previous works and using the Galerkin method, convergence was fulfilled in the presence of 3 modes.
Other Latest Articles
- Investigation of the effect of angle beam transducer parameters on the lamb wave field in the three–layer plate by normal mode expansion method
- Pull-in behaviors of micro-beam made of bidirectional functionally grade materials based on modified couple stress theory
- Kinetics of swelling of cylindrical functionally graded temperature-responsive hydrogels
- A genetic algorithm-based approach for numerical solution of droplet status after Coulomb fission using the energy
- On the buckling analysis of functionally graded sandwich beams using a unified beam theory
Last modified: 2022-06-23 04:23:33