ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Comparative Life Cycle Assessment Study for Fabric Based Electromagnetic Shielding

Journal: Proceedings - International Conference on Advanced Materials and Systems (ICAMS) (Vol.2020, No. 8)

Publication Date:

Authors : ;

Page : 447-454

Keywords : LCA; EMI shielding; fabrics;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Life Cycle Assessment (LCA) studies represent the scientific approach for elaborating modern policies and supporting management decisions in the field of Sustainable Production and Consumption. The goal of many LCA studies undertaken for research are related to an exhaustive comparison of a modern, innovative product or process with respect to an initial, conventional one. This paper deals with such an approach for fabric based electromagnetic shielding. Electrically conductive textile fabrics are used in applications of electromagnetic shielding. Two basic types of technology for imparting electro- conductive properties to textiles are available, namely: insertion of conductive yarns in the fabric structure and coating with conductive layers. Magnetron plasma coating is a modern technology for achieving thin metallic layers on fabrics. Therefore, we focused the LCA study to the comparison between cotton woven fabrics with inserted conductive yarns out of stainless steel in warp and weft direction and cotton fabrics coated with thin layers of copper by magnetron plasma laboratory equipment. Functional unit of the comparative study was one square meter of EM textile shield with 5.2 dB at 1 GHz. A modelling of the fabric with inserted conductive yarns was performed in order to reach same shielding effectiveness at a certain frequency, as in the case of the coated fabric. Inventory data was collected for the fabric with conductive yarns from the textile company SC Majutex SRL, while for the plasma coated fabric from INFLPR. Impact assessment was performed by INCDTP, by using the LCA software SimaPro7 and the data basis EcoInvent 3.0. Interpretation of results shows that weaving of conductive yarns has a smaller impact on the environment than magnetron plasma coating using laboratory equipment, in a ratio of 1:2. This fact is explained by the industrial process of weaving as compared to laboratory process of coating, whereas brings the idea that upon utilization of industrial magnetron equipment for coating one may achieve in the end better environmental impact due to the process optimization for large area plasma processing.

Last modified: 2022-07-19 20:12:00