ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

The Generalized Inequalities via Means and Positive Linear Mappings

Journal: Sahand Communications in Mathematical Analysis (Vol.19, No. 2)

Publication Date:

Authors : ; ;

Page : 133-148

Keywords : Operator means; Numerical means; Kantorovich's constant; Positive linear map;

Source : Download Find it from : Google Scholarexternal

Abstract

In this paper, we establish further improvements  of the Young inequality and its reverse. Then, we assert operator versions corresponding them. Moreover, an application including positive linear mappings is given. For example, if $A,Bin {mathbb B}({mathscr H})$ are two invertible positive operators such that $0begin{align*} & Phi ^{2} bigg(A nabla _{nu} B+ rMm left( A^{-1}+A^{-1} sharp_{mu} B^{-1} -2 left(A^{-1} sharp_{frac{mu}{2}} B^{-1} right)right) & qquad +left(frac{nu}{mu} right) Mm bigg(A^{-1}nabla_{mu} B^{-1} -A^{-1} sharp_{mu} B^{-1} bigg)bigg) & quad leq left( frac{K(h)}{ Kleft( sqrt{{h^{'}}^{mu}},2 right)^{r^{'}}} right) ^{2} Phi^{2} (A sharp_{nu} B), end{align*} where $r=min{nu,1-nu}$, $K(h)=frac{(1+h)^{2}}{4h}$,  $h=frac{M}{m}$, $h^{'}=frac{M^{'}}{m^{'}}$ and $r^{'}=min{2r,1-2r}$. The results of this paper generalize the results of recent years. 

Last modified: 2022-07-31 17:27:17