Improvement of Bat Algorithm Classification Accuracy Using Image Fusion Techniques
Journal: International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE) (Vol.11, No. 5)Publication Date: 2022-10-10
Authors : Benmostefa Somia Fizazi Hadria;
Page : 196-203
Keywords : Bat Algorithm; Bio-inspired Algorithm; Image Fusion; Multiresolution Fusion Remote Sensing Image Classification; Pansharpening; Remote Sensed Image Processing;
Abstract
This paper investigates the pansharpening influence on satellite images-classification using Bat algorithm (BA). To this end, experiments are proceed using two fusion techniques: Brovey Transform and Intensity-Hue-Saturation transform, in order to merge the characteristics of images of the same area. Considering the classification as an optimization problem, BA can be applied on a fully-featured image. For this research, recent Landsat 8 panchromatic and multispectral images taken over the city of Oran (Algeria) are used to show the performance of BA and the benefit of using fusion techniques to improve classification. This paper shows improvement in the results when a fusion step is applied. Additionally, BA performance is compared against K- Means and Particle Swarm Optimization. From the obtained results, it can be concluded that BA can be successfully applied to solve unsupervised classification problems.
Other Latest Articles
- Framework for Intelligent Early Warning Systems of Crop Diseases
- Exploring the Integration of Lisp into a Modern Reinforcement Learning Project Through the Use of Hy
- Desigualdad y estratificación socioeconómica en relación con el individualismo y el colectivismo cultural: una discusión teórica de su construcción desde la psicología social
- Experiencia de educación sensible en tres centros comerciales de Medellín; una experimentación con arte contemporáneo
- La cognición social en los padres de familia de los niños y adolescentes que presentan problemáticas de convivencia escolar
Last modified: 2022-10-11 00:30:15