ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Model load in case of an internal explosion

Journal: Pozharovzryvobezopastnost/Fire and Explosion Safety (Vol.30, No. 3)

Publication Date:

Authors : ;

Page : 5-15

Keywords : safety structures; pressure peak; explosive load; elastic deformation; plastic deformation; load rise;

Source : Download Find it from : Google Scholarexternal

Abstract

Introduction. Presently, there are no model loads that describe the burst effect of an internal explosion. The goal of the article is to design a model load that characterizes an internal explosion with regard for the effect of inertial safety structures. The author provides relevant examples. Methods. The experiment and the numerical modeling identify the characteristics of an internal explosion, primarily, its destructive effect. First of all, these characteristics include the pressure value and rate in the process of the first peak formation. A drop follows the first peak. Another rise to the second peak is followed by the final pressure drop. The rise to the first peak is described by a cubic parabola. The constant value of pressure is equal to the highest value of the two peaks. It replaces the drop and rise between the peaks. The linear dependence describes the area of the final pressure drop, so that the deformation is completed at the end point. The time of the pressure rise is determined by breakup, and it takes account of the characteristics of safety structures. The time of the second peak is the time when the flame area is maximal. Results and discussion. The deformation that may occur before the first peak represents a solution to the equation, describing the beam motion. This equation is provided in the article. The deformation between the peaks is determined by the balance of energy. The deformation, that occurs when the pressure drops, is identified by the solution to the motion equation. The solution is subject to the deformation completion condition. Conclusions. The results show that the time between the peaks is important when the pressure is close to maximal. The analysis identifies the conditions under which deformation remains elastic. These results can be contributed to the assessment of the bearing capacity of buildings that accommodate explosive production facilities. This approach ensures conservative results.

Last modified: 2023-03-01 00:06:12