ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Method for optimization of camera installation parameters for video monitoring of arbitrary surveillance zone

Journal: Scientific and Technical Journal of Information Technologies, Mechanics and Optics (Vol.23, No. 5)

Publication Date:

Authors : ;

Page : 927-934

Keywords : surveillance task; camera; video camera; view area; surveillance area; camera installation; choice of camera location;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

The problem of optimizing the choice of parameters for installing a video camera, such as the location and viewing angles, tilt and pan to increase the information content of the generated video signal, is considered. The relevance of the paper is due to the lack of methods and programs for automating the process of choosing these parameters. The problem is solved when the pixel density is reached, which is necessary for solving the task of observation. It is based on the proposed model for representing view areas, surveillance and camera locations as discrete sets in accordance with the observation task being solved, which determines the required minimum pixel density as well as selected criteria and restrictions. It gives the opportunity to solve the problem programmatically, unlike existing solutions that use empirical approaches. The main and additional criteria as well as limitations are formulated according to which it is possible to optimize the position of the camera relative to the required surveillance area — the observation task to be solved, the minimum required camera resolution and the maximum information content of the generated image. Algorithms for calculating estimates of the near, far and side boundaries of the view area as well as view angles, pan and tilt are formulated. The adequacy of the proposed model to real areas of observation, review and location of cameras is substantiated. An example of solving an optimization problem is given, which confirms the correctness of using the proposed method. The results obtained make it possible to automate the design process and minimize the influence of the human factor when choosing the location and installation parameters of cameras in the process of designing surveillance systems. The results of the work can be used in the development of algorithms and programs for computer-aided design of surveillance systems.

Last modified: 2023-10-24 18:27:35