IMPLEMENTING GMM-BASED HIDDEN MARKOV RANDOM FIELD FOR COLOUR IMAGE SEGMENTATION
Journal: International Journal of Engineering Sciences & Research Technology (IJESRT) (Vol.4, No. 4)Publication Date: 2015-04-30
Authors : ShanazAman; Farhat Afreen; Harapriya Sahoo; Chandana Patel; Rajan Jha; Ashim Saurav Sahoo;
Page : 208-212
Keywords : Image segmentation; EM algorithm; MAP Estimation; GMM-HMRF; color image segmentation;
Abstract
As it is well known to all that the terms image segmentation means dividing a picture into different types of regions and classes of particular geometric shape. So we can say that each class has normal distribution with specific mean and variance and hence the picture can be a Gaussian Mixture Model. In this paper, we first study the Gaussian-based hidden Markov random field (HMRF) model and its expectation maximization (EM) algorithm. Then we generalize it to Gaussian mixture model-based hidden Markov random field. The algorithm is implemented in MATLAB R20013a. We also apply this algorithm to color image segmentation problems.
Other Latest Articles
- AN ENERGY EFFICIENT PROTOCOL BASED ON HIERARCHICAL ROUTING TECHNIQUE FOR WSN
- Studi Standardisasi Sertifikat Elektronik dan Keandalan dalam Penyelenggaraan Sistem Transaksi Elektronik
- Analisis Kesuksesan Sistem Informasi Manajemen Sumber Daya dan Perangkat Pos dan Informatika (SIMS)
- Evaluasi Kinerja IEEE 802.11e HCCA untuk Dukungan QoS pada WLAN Menggunakan NS-2
Last modified: 2015-05-07 18:49:34