ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

FEDEMB: A VERTICAL AND HYBRID FEDERATED LEARNING ALGORITHM USING NETWORK AND FEATURE EMBEDDING AGGREGATION

Journal: Proceedings on Engineering Sciences (Vol.6, No. 2)

Publication Date:

Authors : ;

Page : 601-612

Keywords : Federated Learning; Differential Privacy; Vertical and Hybrid Federated Learning;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Federated learning (FL) is an emerging paradigm for decentralized training of machine learning models on distributed clients, without revealing the data to the central server. The learning scheme may be horizontal, vertical or hybrid (both vertical and horizontal). Most existing research work with deep neural network (DNN) modeling is focused on horizontal data distributions, while vertical and hybrid schemes are much less studied. In this paper, we propose a generalized algorithm FedEmb, for modeling vertical and hybrid DNN-based learning. The idea of our algorithm is characterized by higher inference accuracy, stronger privacy-preserving properties, and lower client-server communication bandwidth demands as compared with existing work. The experimental results show that FedEmb is an effective method to tackle both split feature & subject space decentralized problems. To be specific, there are 0.3% to 4.2% improvement on inference accuracy and 88.9 % time complexity reduction over baseline method.

Last modified: 2024-06-05 22:38:02