Urinary PYD/Creatinine Ratio Has Negative Correlation to Serum 25(OH)D and Positive Correlation to Chronic Lead Exposure Index
Journal: The Indonesian Biomedical Journal (Vol.16, No. 4)Publication Date: 2024-08-01
Authors : Siti Sarah Hajar; Ninik Mudjihartini; Nurul Ratna Mutu Manikam; Mulyana Mulyana; Muchtaruddin Mansyur;
Page : 379-86
Keywords : 25(OH)D; bone resorption; pyridinoline; lead; worker;
Abstract
BACKGROUND: The burden of disease due to lead exposure continues to increase. Lead interferes with 25(OH)D hydroxylation and calcium transport, increasing osteoclastic activity and bone resorption. Pyridinoline crosslinks (PYD), as an indicator of bone damage, can be seen earlier compared to imaging changes. Therefore, it is necessary to determine the correlation between serum 25(OH)D levels and the urinary PYD/creatinine ratio in workers exposed to lead, since up to now, there are only limited studies related to it. METHODS: This cross-sectional study involved 104 workers exposed to lead, selected from parents whose children had blood lead levels above 10 µg/dL. Questionnaires and physical examination were performed to obtain characteristic data from subjects. Data regarding blood lead levels, serum 25(OH)D levels, urinary PYD levels, and urinary creatinine levels were also obtained from various laboratory methods. RESULTS: Most subjects (86.5%) had inadequate serum 25(OH)D. Median blood lead levels was 6.3 (1.2-35.5) µg/dL, chronic lead exposure index was 35.3 (1.2-535.8) years µg/dL, serum 25(OH)D levels was 22 (8-52) ng/mL, and urinary PYD/creatinine ratio was 5.3 (3.6-28.1)×10-6. There was a significant negative correlation between serum 25(OH)D levels and urinary PYD/creatinine ratio in workers exposed to lead. There was also a significant positive correlation between chronic lead exposure index and the urinary PYD/creatinine ratio. CONCLUSION: Since urinary PYD/creatinine ratio is correlated with serum chronic lead exposure index and serum 25(OH)D levels, it suggests that pyridinoline might be a potential biomarker to detect bone metabolism disorder due to the chronic lead exposure. Vitamin D adequacy is also an important factor in preventing bone metabolism disorder amidst chronic lead exposure.
Other Latest Articles
- Elephantopus scaber Linn. Leaf Extract Sensitizes Doxorubicin in Inducing Apoptosis in HSC-3 Tongue Cancer Cells through Inhibiting Survivin Activity at Thr34
- Normal Value of Thrombocytes Indices in Indonesian Adults: Focus on Gender and Ages
- Lactiplantibacillus plantarum IS-10506 Supplementation Improves Clinical Outcome and Immunology Markers in Psoriasis Vulgaris Patients: A Randomized Controlled Trial
- The Injected Plasma of Myasthenia Gravis Patient with A Low T-reg Level Caused Clinical Myasthenic Syndromes in Swiss-Webster Mice
- Andrographis paniculata Ethanol Extract Alleviates High Glucose-induced Senescence of Human Umbilical Vein Endothelial Cells via the Regulation of mTOR and SIRT1 Pathways
Last modified: 2024-08-30 14:18:25