ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

EEG BASED COGNITIVE WORKLOAD CLASSIFICATION DURING NASA MATB-II MULTITASKING

Journal: International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE) (Vol.3, No. 1)

Publication Date:

Authors : ; ; ; ; ;

Page : 35-41

Keywords : Cognitive Workload; Discrete wavelet transform; EEG spectral feature; Neural Network.;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

The objective of this experiment was to determine the best possible input EEG feature for classification of the workload while designing load balancing logic for an automated operator. The input features compared in this study consisted of spectral features of Electroencephalography, objective scoring and subjective scoring. Method utilizes to identify best EEG feature as an input in Neural Network Classifiers for workload classification, to identify channels which could provide classification with the highest accuracy and for identification of EEG feature which could give discrimination among workload level without adding any classifiers. The result had shown Engagement Index is the best feature for neural network classification.

Last modified: 2015-12-20 21:37:59