Cinnamaldehyde Attenuates Cataractogenesis via Restoration of Hypertension and Oxidative Stress in Fructose-Fed Hypertensive rats
Journal: Journal of Pharmacopuncture (Vol.19, No. 2)Publication Date: 2016-06-30
Authors : Amrita Singh; Samsroz Ahmad Khan; Rajesh Choudhary; Surendra Haribhau Bodakhe;
Page : 137-144
Keywords : cataract; cinnamaldehyde; fructose; hypertension; oxidative stress;
Abstract
Objectives: Several studies have revealed that systemic hypertension is strongly associated with cataractogenesis. However, the pathophysiology and treatment is often unclear. In this study, we evaluated the anti-cataractogenic effect of cinnamaldehyde (CA), a natural organic compound, in rats with fructose-induced hypertension. Methods: The rats were divided into six groups. For six weeks, the normal group received a suspension of 0.5% carboxy methyl cellulose (10 mL/kg/day, p.o.) while five other groups received a 10% (w/v) fructose solution in their drinking water to induce hypertension. By the end of the third week hypertension had been induced in all the animals receiving fructose. From the beginning of the fourth week to the end of the sixth week, one of those five groups (control) continued to receive only 10% (w/v) fructose solution, one group (standard) received ramipril (1 mg/kg/day, p.o.) plus 10% (w/v) fructose solution, and three groups (experimental) received CA at doses of 20, 30, and 40 mg/kg/day p.o., plus 10% (w/v) fructose solution. Blood pressure was measured weekly using a non-invasive blood pressure apparatus. After six weeks, the animals were sacrificed, and the anti-cataractogenic effects on the eye lenses were evaluated. Results: Administration of fructose elevated both the systolic and the diastolic blood pressures, which were significantly reduced by CA at all dose levels. In the control group, a significant increase in the malonaldehyde (MDA) level and decreases in the total protein, Ca2+adenosine triphosphate (ATP)ase activity, glutathione peroxidase, catalase, superoxide dismutase and glutathione levels, as compared to the normal group, were observed. Administration of CA at all doses significantly restored the enzymatic, non-enzymatic, antioxidants, total protein, and Ca2+ATPase levels, but decreased the MDA level, as compared to the control group. Conclusion: The present study revealed that CA modulated the antioxidant parameters of the serum and lens homogenates in hypertension-induced cataractogenic animals.
Other Latest Articles
- Inductions of Caspase-, MAPK- and ROS-dependent Apoptosis and Chemotherapeutic Effects Caused by an Ethanol Extract of Scutellaria barbata D. Don in Human Gastric Adenocarcinom Cells
- Cornu cervi pantotrichum Pharmacopuncture Solution Facilitate Hair Growth in C57BL/6 Mice
- Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-
- The History of Liquid Ear Acupuncture and the Current Scientific State of the Art
- Comparison of the outcome of structured essay versus unstructured essay questions used as assessment tool in pathology
Last modified: 2016-06-30 10:19:23