ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Performance improvement of a Rainfall Prediction Model using Particle Swarm Optimization

Journal: International Journal of Computational Engineering Research(IJCER) (Vol.6, No. 7)

Publication Date:

Authors : ; ;

Page : 39-42

Keywords : : Particle swarm optimization; exponential autoregression; nonlinear regression; ARIMA;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

The performances of the statistical methods of time series forecast can be improved by precise selection of their parameters. Various techniques are being applied to improve the modeling accuracy of these models. Particle swarm optimization is one such technique which can be conveniently used to determine the model parameters accurately. This robust optimization technique has already been applied to improve the performance of artificial neural networks for time series prediction. This study uses particle swarm optimization technique to determine the parameters of an exponential autoregressive model for time series prediction. The model is applied for annual rainfall prediction and it shows a fairly good performance in comparison to the statistical ARIMA model.

Last modified: 2016-09-17 18:14:59