Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet
Journal: Mehran University Research Journal of Engineering and Technology (Vol.35, No. 4)Publication Date: 2016-10-01
Authors : FEROZ AHMED SOOMRO; QIANG ZHANG; SYED FEROZ SHAH;
Page : 657-666
Keywords : Stretching Sheet; Similarity Transformation Technique; First-Order Velocity-Slip; Porous Medium; Shooting Technique; Fourth-Order Runge-Kutta Method;
Abstract
Present paper investigates 2D (Two-Dimensional) stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations) are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations). Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.
Other Latest Articles
- Use of Water Quality Index Result of Robertson Lake Jabalpur in Remote Sensing Application
- Optimizing WiMAX: Mitigating Co-Channel Interference for Maximum Spectral Efficiency
- Assessment of Mass Bathing On River Water Quality during Simhastha Mahakumbh Mela 2016 in Ujjain, Madhya Pradesh India
- Effect of Compaction on Compressive Strength of Unfired Clay Blocks
- ROCK ALL SCORE IN NONVARICEAL UPPER GASTROINTESTINAL BLEEDING (NVUGIB): A PREDICTOR OF IN - HOSPITAL REBLEEDING
Last modified: 2016-10-08 19:48:53