Bernoulli collocation method for high-order generalized pantograph equations
Journal: NEW TRENDS IN MATHEMATICAL SCIENCES (Vol.3, No. 2)Publication Date: 2015-06-01
Authors : Ayşegül Daşçıoğlu; Mehmet SEZER;
Page : 96-109
Keywords : Pantograph equations Functional differential equations Bernoulli polynomials Collocation method.;
Abstract
In this paper, an approximate method based on Bernoulli polynomials has been presented to obtain the solution of generalized pantograph equations with linear functional arguments. Both initial and boundary value problems have been solved by this collocation technique. Approximate solution can also be corrected with the residual function. Some numerical examples have been given to illustrate the reliability and efficiency of the method.
Other Latest Articles
- Fractional Integral Inequalities for Different Functions
- Approximate solutions of the hyperchaotic Rössler system by using the Bessel collocation scheme
- Residual correction of the Hermite polynomial solutions of the generalized pantograph equations
- Müntz-Legendre Matrix Method to solve Delay Fredholm Integro-Differential Equations with constant coefficients
- Korteweg-de Vries Flow Equations from Manakov Equation by Multiple Scale method
Last modified: 2016-10-30 05:03:55