A note on nonlinear singular integral operators depending on two parameters
Journal: NEW TRENDS IN MATHEMATICAL SCIENCES (Vol.4, No. 1)Publication Date: 2016-01-01
Authors : Gumrah Uysal; Ertan Ibikli;
Page : 104-114
Keywords : Continuity point Lebesgue point rate of convergence Lipschitz condition nonlinear integral operators.;
Abstract
In this paper, the pointwise approximation of nonlinear singular integral operators of the form:% begin{equation*} T_{lambda }left( f;xright) =underset{D}{int }K_{lambda }left( t-x;f(t)right) dt,text{ }xin D,text{ }lambda in Lambda end{equation*}% where$ D=$ is open, semi-open or closed arbitrary bounded interval in $% %TCIMACRO{U{211d} }% %BeginExpansion mathbb{R} %EndExpansion $ or $D=% %TCIMACRO{U{211d} }% %BeginExpansion mathbb{R} %EndExpansion $, $Lambda neq emptyset $ be the set of indices, at a common continuity point and Lebesgue point of the functions $fin L_{1,varphi }(D)$ and $% varphi in L_{1}(D).$ Here $L_{1,varphi }(D)$ is the space of all measurable functions for which $left vert frac{f}{varphi }right vert $ is integrable on $D.$ Also we investigate the rate of convergence at this point.
Other Latest Articles
- Asymptotic normality of kernel estimator of $\psi$-regression function for functional ergodic data
- Some multiordered difference sequence spaces of fuzzy real numbers defined by modulus function
- Instuitionistic fuzzy dot d-ideals of d-algebras
- On exponential pompeiu?s type inequalities for double integrals with applications to ostrowskis inequality
- An assessment of a semi analytical AG method for solving nonlinear oscillators
Last modified: 2016-10-30 05:08:39