ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Development of 0.2C-CrMnMoV Ultra High Strength Steel

Journal: International Journal of Scientific Engineering and Technology (IJSET) (Vol.3, No. 2)

Publication Date:

Authors : ;

Page : 101-108

Keywords : Ultra high strength steel; thermomechanical treatment; mechanical properties; microstructure.;

Source : Downloadexternal Find it from : Google Scholarexternal


A study was carried out to develop a low alloy ultra high strength steel by induction melting and thermomechanical treatment (TMT) containing alloying elements like carbon, manganese, molybdenum, chromium and vanadium. A base alloy was prepared with 0.24%C, 1.16% Mn, 0.23% Si, 5.61% Cr, 0.42%V, 1.01% Mo, 0.026%S and 0.032%P. It showed tensile strength of 1467 MPa, yield strength of about 1180 MPa, impact strength of 6.3J and elongation of 5.9% in as-tempered condition. Other alloy was prepared by addition of 0.054% titanium with the base composition. It displayed tensile strength, yield strength, impact toughness and % elongation of 1615 MPa, 1240 MPa, 8.2J and 6.15%, respectively. The optical, SEM and TEM microstructures confirmed that the base alloy and the titanium alloy consisted with tempered lath martensites. The remaining part of the ingot was further processed by the thermomechanical treatment. The ingots were rolled in two passes, initially at 950?C and subsequently at 850?C followed by immediate cooling in oil. The TMT plates of the base alloy confirmed the tensile strength of 1755 MPa, yield strength in excess of 1460 MPa and impact strength of 9.1J. The titanium added TMT plate displayed tensile strength of 1860 MPa, yield strength of 1580 MPa and impact strength of 10.1J. Microstructures of titanium added alloy consisted finer lath martensite and precipitates of titanium carbides/carbonitrides. It was observed that the addition of titanium significantly improved the mechanical properties of 0.2C-Cr Mn Mo V alloys and the mechanical properties were also improved significantly by thermomechanical treatment.

Last modified: 2014-02-04 19:30:52