ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login


Journal: Техника и технология пищевых производств (Food Processing: Techniques and Technology) (Vol.1, No. 44)

Publication Date:

Authors : ;

Page : 24-30

Keywords : The degree of overgrowth; cell of growth; growth rate; primordial;

Source : Downloadexternal Find it from : Google Scholarexternal


The article is devoted to the actual problem of utilization of lignocellulose waste of woodworking industry and their use as substrates in the production of fruit bodies of saprotrophic fungi. The aim of the research was to study the efficiency of G. frondosa (Diks: Fr) Gray, cultivated on lignocellulose substrates with various degrees of grinding. The article describes the features of the formation of G. frondosa fruit bodies depending on cultivation conditions and the particle size of the lignocellulose substrate. To cultivate the fruit bodies of G. frondosa species favorable plant substrates based on woodworking industry and gardening waste have been developed. The optimum substrate for solid-phase cultivation of the G. frondosa mycelium is a sample №1 based on birch sawdust with a grinding degree of 5.0-10.0 mm. The dependence of the level of colonization of G. frondosa mycelium on time has been obtained. It is shown that substrates containing birch sawdust (griding 5.0-10.0 mm), birch chips (crushing 15.0-20.0 mm) and crushed sea buckthorn branch (degree of crushing 5.0-10.0 and 10.0-20.0 mm) are suitable for obtaining fruit bodies of G. frondosa. The first wave of fruiting exceeded the yield of the second wave by almost 2 times. The highest yield of G. frondosa - 268.01 g/kg of substrate - has been obtained using birch sawdust having a particle size of 5.0-10.0 mm, while the productivity of birch chips with a degree of crushing of 10.0-20.0 mm was 231.04 g/kg of substrate. The yield of G. frondosa cultivated on a substrate based on crushed buckthorn threads with the degree of crushing of 5.0-10.0 mm was 250.52 g/kg of substrate, while the productivity of the same substrate with a particle size of 10.0-20.0 mm was only 215.50 g/kg of substrate

Other Latest Articles

Last modified: 2018-04-13 15:53:22