ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Genotype by Environment Interaction and Kernel Yield Stability of Groundnut (Arachis hypogaea L.) Varieties in Western Oromia, Ethiopia

Journal: Journal of Agriculture and Crops (Vol.2, No. 11)

Publication Date:

Authors : ; ; ; ;

Page : 113-120

Keywords : : Crete; Energy; Hydroponic greenhouses; Renewable energies; Solar-PV energy; Solid biomass;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Nine groundnut varieties were tested across six environments in western Oromia, Ethiopia during 2013 main cropping season to evaluate the performance of groundnut varieties for kernel yield and their stability across environments. The varieties were arranged in randomized complete block design (RCBD) with three replications. Pooled analysis of variance for kernel yield showed significant (p≤0.01) differences among the varieties, environments and the genotype by environment interaction (GxE). Additive main effect and multiplicative interactions (AMMI) analysis showed highly significant (p≤0.01) differences for varieties, environments and their interaction on kernel yield. Similarly, the first and the second interaction principal component axis (IPCA1 and IPCA 2) were highly significant (p≤0.01) and explained 41.32 and 7.2% of the total GxE sum of squares, respectively. The environment, genotype and genotype by environment interaction accounted 14.7, 24.1 and 53.3% variations, respectively. This indicated the existence of considerable amounts of deferential response among the varieties to changes in growing environments and the deferential discriminating ability of the test environments. Shulamith and Bulki varieties showed the smallest genotype selection index (GSI) values and had the highest kernel yield and stability showing that these varieties had general adaptation in the tested environments. In the genotype and genotype by environment (GGE) biplot analysis, IPCA1 and IPCA 2 explained 63.5% and 22.4%, respectively, of genotype by environment interaction and made a total of 85.9%. GGE biplot analysis also confirmed Bulki and Shulamith varieties showed better stability and thus ideal varieties recommended for production in the test environments and similar agro-ecologies.

Last modified: 2018-11-05 14:46:34