Peculiarities of Forming a Temporary Pulsating Cavity from the Pistol "Fort" Shots
Journal: Ukrainian journal of medicine, biology and sport (Vol.4, No. 1)Publication Date: 2019-02-20
Authors : Shcherbak V. V.;
Page : 225-229
Keywords : ;
Abstract
It is generally accepted that the ballistic gelatin cracks formed in the permanent cavity reflect the distribution of kinetic energy scattered by the bullet in the simulator. The morphological features of gunshot injuries from the "Fort" pistols are currently not studied from the positions of wound ballistics. The purpose of the study was to investigate the character and morphological features of gunshot injuries on nonbiological imitators of a human body at pistols "Fort-12" and "Fort-14TP"shots. Material and methods. Shots were carried out from the guns "Fort-12" and "Fort-14TP" with standard ammunition 9 х 18 mm caliber. Gelatin blocks were used as human body simulators. They were made using 10% solution of food grade Gelatin type A 250 Bloom, cooled to + 4°C. To study the traumatic effect of a gunshot injury, we used standard methods of calculation: the Total Crack Length method, the Wound Profile method, the polygon-procedure. Results and discussion. It was experimentally established that after the bullet went through the gelatin block, the temporary pulsating cavity coarctated, as in living tissues. In this case, there was a constant permanent cavity with elements of the temporary pulsating cavity in the form of radial cracks, as the equivalent of the destructive action of the bullet. There was a screw-like displacement of the breaks, which corresponds to the direction of the bullet rotation. There were also wavelike variations of metric characteristics of temporary pulsating cavity in the permanent cavity. Conclusion. Using the ballistic gelatin as a simulator of living tissues allows us to visually study the basic patterns of the temporary pulsating cavity formation, its morphometric characteristics, which reflect the features of energy dissipation through a permanent cavity. Morphometric characteristics of radial gelatin breaks, as the equivalent of temporary pulsating cavity, indicate its wave-like oscillation. Radial breaks are spirally shifted along the clockwise rotation, corresponding to the direction of the bullet rotation. The results of experimental data can be used in simulation and forensic medical reconstruction of injuries, as well as for forecasting its volume, including the determination of the mechanism of indirect damage. In addition, the findings can be promising in the assessment of tissue deviations, as well as in the development of personal protective equipment for the effective reduction of the bullet damaging effect.
Other Latest Articles
- Comparison of the Penetration Depth of the Domestic Corrective Silicone Material in the Periodontal Sulcus depending on the Method of Anatomical Impression
- Comparative Characteristics of Using Of Auxiliary Materials during Making Pin Structures in the Stages of Orthopedic Treatment with Inlay of a Tooth Crown Total Defect
- Comparative Assessment of Changes in Biochemical Indices of Oral Liquid in Patients with Chronic Odontogeny Sinusitis during the Standard Treatment with Electroacupuncture
- The Characteristic of the Dental Diseases in the Military Personnel of the Chernivtsi Boundary Group
- Comparative Assessment of Inflammatory Zones at the Stages of Using the Complete Removable Prostheses
Last modified: 2020-12-04 02:09:53