ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

Journal: Molecular Biology Research Communications (Vol.3, No. 4)

Publication Date:

Authors : ; ;

Page : 241-251

Keywords : Rapeseed; SnRK2; BnABF2; Drought tolerance; Transcript accumulation;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signaling pathway in Arabidopsis. This study aimed to clone and sequence an ortholog of the Arabidopsis SRK2D gene from Brassica napus, designated as BnSRK2D. An 833bp cDNA fragment of BnSRK2D, which shared high amino acid sequence identity with its Arabidopsis counterpart, was obtained suggesting a possible conserved function for these genes. The expression pattern of BnSRK2D and its potential target gene B. napus ABF2 (BnABF2) were then analyzed in the two cultivars with contrasting reaction to water deficit stress. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed that BnSRK2D and BnABF2 were water-deficit stress responsive genes with similar expression profiles. The accumulation of the BnSRK2D and BnABF2 transcripts in the two cultivars was linked with their level of drought tolerance, as the drought tolerant cultivar had significantly higher expression levels of both genes under normal and water deficit stress conditions. These findings suggest that BnSRK2D and BnABF2 genes may be involved in conferring drought tolerance in B. napus.

Last modified: 2015-04-25 16:16:00