Interatomic interaction of additive elements and their influence on the processes in the double metal solutions
Journal: Reporter of the Priazovskyi State Technical University. Section: Technical sciences (Vol.31, No. 1)Publication Date: 2015-12-24
Authors : M.A. Ryabikina; V.I. Miroshnichenko; K.I. Tkachenko; N.V. Tkachenko;
Page : 50-58
Keywords : trace elements; electronegativity; interatomic bond;
Abstract
Modern industry uses a lot of elements as additives to improve the service char-acteristics of metal products that are to be used for various purposes. These elements can be divided into two groups: the first group includes the elements interacting with iron and improving its characteristics (alloying elements), and the second group includes the elements, that modify the characteristics of the structure and properties in an undesirable direction. These are trace elements: S, P, O, As, and others in steel. The negative impact of these elements shows itself as banding, the formation of non-metallic inclusions, flakes, grain boundary segregations et al. The influence of the elements of the both groups on the properties of steel depends on the nature and level of interatomic interaction in the alloy. Computational and analytical study of the major impurity elements in steel impact on the interatomic bond strength and the probability of forming complexes, clusters, and chemical compounds with the basic alloying elements in the steel has been carried out in the work. The theoretical parameter which defines the strength of the ion-covalent bond of two atoms: non-metallic ? metallic is the electronegativity of elements. The electronegativity difference of the metal and non-metallic elements increasing, the ionic bonding and thermodynamic stability of these compounds increase. On the other hand, concentration of valent electrons is a universal characteristic of an atomic element which determines many of its properties, and especially the energy of interatomic interaction. Energy calculations of pairwise interatomic impurity elements: H, C, N, S, P, As interaction with Fe and major alloying elements in steel: Mn, Cr, Si, V, Al, Ti, W, Cu, Mo, Nb were made. It has been stated that all the impurity elements except phosphorus, hydrogen and arsenic have sufficient high adhesion with the majority of the metal elements in the modern steels. Phosphorus does not form stable compounds with metals, but has a tendency to form grain boundary segregation (GBS). Niobium, molybdenum and titan change the nature of phosphorus distribution in steel and prevent GBS. Carbon, nitrogen and sulfur are impurity elements having higher energy of ion-covalent interaction with the main metals in steel, therefore tend to form clusters, complexes and chemical compounds
Other Latest Articles
- Analysis of application of various materials for manufacturing parts of motor car bodies in automobile industry
- CONCEPTUALIZATION OF THE DIAGNOSTICS MODEL OF FUTURE TEACHER'S CULTURE CREATIVITY GROWTH IN CONDITIONS OF MULTICULTURAL EDUCATION
- V.G. Efremenko, V.I. Zurnadgy
- Analytical study of getting clinker from metallurgical wastes
- Research of complex briquetted modifiers influence on cast iron properties
Last modified: 2016-11-28 21:38:32