Characterization of Physical, Thermal and Spectral Properties of Biofield Treated Date Palm Callus Initiation Medium
Journal: International Journal of Nutrition and Food Science (Vol.4, No. 6)Publication Date: 2015-11-09
Authors : Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Rakesh Kumar Mishra; Snehasis Jana;
Page : 660-668
Keywords : Biofield Energy Treatment; Date Palm Callus Initiation Medium; X-ray Diffraction; Thermal Analysis; Particle Size Analysis; Surface Area Analysis;
Abstract
The date palm is mainly cultivated for the production of sweet fruit. Date palm callus initiation medium (DPCIM) is used for plant tissue culture applications. The present work is intended to evaluate the impact of Mr. Trivedi's biofield energy treatment on physical, thermal and spectral properties of the DPCIM. The control and treated DPCIM were evaluated by various analytical techniques such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, particle size analyzer (PSA), surface area analyzer and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD analysis revealed a decrease in intensity of XRD peaks of the treated sample as compared to the control. The crystallite size of the treated DPCIM (81.02 nm) was decreased with respect to the control sample (84.99 nm). The DSC analysis showed a slight decrease in melting temperature of the treated sample. Additionally, the latent heat of fusion of treated sample was changed by 45.66% as compared to the control sample. The TGA analysis showed an increase in onset degradation temperature of the treated sample (182ºC) as compared to the control sample (142ºC). This indicated the increase in thermal stability of the treated DPCIM. PSA results demonstrated an increase in average particle size (d50) and size showed by 99% of particles (d99) by 19.2 and 40.4%, respectively as compared to the control sample. The surface area analyzer showed a decrease in surface area of treated DPCIM by 13.4%, which was well supported by the particle size results. UV spectra of the treated sample showed the disappearance of absorption peak 261 nm in treated sample as compared to the control. Overall, the result showed that biofield energy treatment has a paramount influence on physical, thermal and spectral properties of DPCIM. Therefore, it is assumed that biofield treated DPCIM could be used as a better medium for plant tissue culture applications.
Other Latest Articles
- BER ANALYSIS OF MIMO - OFDM SYSTEM
- REALIABILITY EVALUATION OF WIRELESS SENSOR NETWORKS - A Review
- Analysis of Physical, Thermal, and Structural Properties of Biofield Energy Treated Molybdenum Dioxide
- Studies on Physicochemical Properties of Biofield Treated 2,4-Dichlorophenol
- MODAL ANALYSIS OF WIND TURBINE BLADE USING FE MODELLING
Last modified: 2018-09-24 19:21:55