Integrable geodesic flows on tubular sub-manifolds
Journal: Journal “Proceedings of the International Geometry Center” (Vol.10, No. 34)Publication Date: 2018-01-30
Authors : Thomas Waters;
Page : 17-28
Keywords : geodesic; integrable; Jacobi field; tube;
Abstract
In this paper we construct a new class of surfaces whose geodesic flow is integrable (in the sense of Liouville). We do so by generalizing the notion of tubes about curves to 3-dimensional manifolds, and using Jacobi fields we derive conditions under which the metric of the generalized tubular sub-manifold admits an ignorable coordinate. Some examples are given, demonstrating that these special surfaces can be quite elaborate and varied.
Other Latest Articles
- Деякі зауваження про сильно нарізно неперервні функції на просторах l_p при p∈[1,+∞]
- Объем конечного ортогонального h-конуса в гиперболическом пространстве положительной кривизны
- О "шестиугольных" решениях некоторых уравнений математической физики
- The properties of conjugated functions in the hypercomplex space
- Characterization of striped surfaces
Last modified: 2018-01-31 05:24:41