Approach to chemometrics models by artificial neural network for structure: first applications for estimation retention time of doping agent
Journal: Chemical Methodologies (Vol.1, No. 2)Publication Date: 2017-10-01
Authors : Mehrdad Shahpar; Sharmin Esmaeilpoor;
Page : 105-127
Keywords : Doping agents; Quadrupole time-of-flight; Genetic Algorithms; Levenberg-Marquardt artificial neural network;
Abstract
A quantitative structure–retention relationship (QSRR), was developed using the genetic algorithm-partial least square (GA-PLS), Kernel partial least square (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) approach for the prediction of the retention time (RT) of doping agents in urine. These retention times are obtained by ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). A suitable set of the molecular descriptors was calculated and the important descriptors were selected with the aid of the GA-PLS and GA-KPLS. By comparing the results, GA-KPLS descriptors are selected for L-M ANN. Finally a model with a low prediction error and a good correlation coefficient was obtained by L-M ANN. This model was used for the prediction of the RT values of some of doping agents which were not used in the modeling procedure. This is the first research on the QSRR of doping agents against the RT using the GA-PLS, GA-KPLS and L-M ANN model.
Other Latest Articles
- Determination of Some Biological Properties of Corn Borers (Sesamia nonagrioides Lefebvre and Ostrinia nubilalis Hübner) in Çanakkale Maize Planting Areas
- Ultrasonic and Microwave effects on the Benzamide/Sulfuryl Chloride mediated benzoylation of Benzene derivatives under Vilsmeier-Haack conditions
- THE DIAGNOSTIC METHOD OF ONCOHEMATOLOGICAL PATIENTS INTRAPERSONAL CONFLICTS
- MOTIVATIONAL COMPONENT IN THE STRUCTURE OF THE MILITARY SERVICEMAN PSYCHOLOGICAL READINESS
- PECULARITIES OF REFLECTION AND SELF-APPRAISAL OF PROFESSIONAL ABILITIES OF WOMEN WITH MENTAL DISORDERS
Last modified: 2018-02-01 20:10:15