Educational Data Mining A Blend of Heuristic and K-Means Algorithm to Cluster Students to Predict Placement Chance
Journal: International Journal of Trend in Scientific Research and Development (Vol.2, No. 6)Publication Date: 19/11/2018
Authors : Ashok. M. V G. Hareesh Kumar;
Page : 1401-1406
Keywords : Data Miining; Educational data mining; clustering; efficient student; heuristic; K-means; KSA concept;
Abstract
Educational data mining emphasizes on developing algorithms and new tools for identifying distinctive sorts of data that come from educational settings, to better understand students. The objective of this paper is to cluster efficient students among the students of the educational institution to predict placement chance. Data mining approach used is clustering. Ablend of heuristic and K-means algorithm is employed to cluster students based on KSA knowledge, Communication skill and attitude . To assess the performance of the program, a student data set from an institution in Bangalore were collected for the study as a synthetic knowledge. A model is proposed to obtain the result. The accuracy of the results obtained from the proposed algorithm was found to be promising when compared to other clustering algorithms. Ashok. M. V | G. Hareesh Kumar "Educational Data Mining: A Blend of Heuristic and K-Means Algorithm to Cluster Students to Predict Placement Chance" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: http://www.ijtsrd.com/papers/ijtsrd18882.pdf
Other Latest Articles
- A Preliminary Study on Aerated Geopolymer using Calcium Carbide
- Studies on Nano Cellulose Century Fiber Composites
- 3D Point Cloud Storage Options A Comparison with a Kinect Data
- Development of Hybrid Fibrous Panel for Controlling Acoustics in Home Theatre Conference Hall
- Area Efficient Full Subtractor Based on Static 125nm CMOS Technology
Last modified: 2018-11-19 20:51:25