Evaluation of C60 nano-structure performance as nano-carriers of procarbazine anti-cancer drug using density functional theory methods
Journal: Iranian Chemical Communication (Vol.7, No. 4)Publication Date: 2019-07-01
Authors : Behnam Farhang Rik; Roya Ranjineh khojasteh; Roya Ahmadi; Maryam Karegar Razi;
Page : 405-414
Keywords : Procarbazine; anticancer drug; DFT; fullerene C60; drug deliver;
Abstract
The study examined surface adsorption of fullerene C60 with anticancer drug procarbazine in gas and solvent (water) phases using the DFT method. In doing so, the structure of the procarbazine, fullerene and their derivatives were first geometrically optimized in three different configurations with a base set of 6-31 g * and B3LYP hybrid functions. Then, IR calculations, frontier molecular orbital, and molecular-based orbital analysis studies were performed on them. Additionally, thermodynamic parameters calculated including Gibbs free energy variation (ΔGad), erythrocyte formation (ΔHad) and thermodynamic properties (K) indicated that the reaction of procarbazine with fullerene C60 is thermal, spontaneous, one-way and non-equilibrium. The effect of temperature on this substituent reaction was also examined and the results proved that at the temperature 314.15 K, the formation process would be best. The results of the computations showed that the results of the analysis of molecular orbitals indicate that the reactivity, electrophilicity, and conductivity of procarbazine are reduced after the substituent reaction. Computational examination of surface adsorption of procarbazine and fullerene C60 nanostructures anticancer drugs using density functional theory (DFT) method
Other Latest Articles
- Photosensitization of coronene–purine hybrids for photodynamic therapy
- Multi-component synthesis of spiro[indoline-3,4'-pyrrolo[3,4-c]pyrazoles] using Zn(BDC) metal-organic frameworks as a green and efficient catalyst
- A computational molecular approach on chitosan vehicle for metformin
- Synthesis and characterization of MCM-41@L-arginine@Pd(0) and its excellent catalytic activity as recyclable heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction
- An investigation on absorption properties of exfoliated graphite for oil spill from Caspian Sea water
Last modified: 2019-06-26 14:31:28