ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

TEMPORAL INCOHERENCE ELIMINATION FOR 2D COLOR DOPPLER ECHOCARDIOGRAPHY VIA MASKING ALGORITHM

Journal: Scientific and Technical Journal of Information Technologies, Mechanics and Optics (Vol.19, No. 5)

Publication Date:

Authors : ;

Page : 875-882

Keywords : 2D color Doppler echocardiography; temporal incoherence; temporal weighting; frame reordering;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Subject of Research. We introduce a novel method for resolving temporal incoherence in two-dimensional color Doppler echocardiography (2D CDE). Incoherence occurs when the temporal distance between frames is less than frame duration. This happens for frame reordering algorithms, which is a widespread processing method. Existing solution β€” temporal weighting β€” requires a lot of time for processing (more than 2 seconds per frame) and is not designed for blood flow data. Method. In the proposed method, the weights are calculated not per pixel, but per image sub-sector obtained by a specific precomputed mask, utilizing the mechanics of the acquisition process. Pixels with opposite blood flow directions are weighted separately with the further weights comparison. We evaluated the algorithm with 10 animal epicardial 2D CDE datasets of the right ventricle. Main Results. Measurements of differences in execution time and results (pixel intensities) with temporal weighting have shown the order of magnitude increase of processing speed from 0.40 frame/s to 4.63 frame/s. Pixel intensity changes inconsiderably: the average difference value is , maximum with intensity values lying within integer range of. Practical Relevance. The proposed algorithm can be embedded into reordering-based 2D CDE processing pipelines in order to obtain temporally correct results. In addition, the processing speed is close to real-time.

Last modified: 2019-10-23 19:35:16