Miscanthus plants processing in fuel, energy, chemical and microbiological industries
Journal: "Foods and Raw materials" Journal (Vol.7, No. 2)Publication Date: 2019-12-20
Authors : Babich O.O. Krieger O.V. Chupakhin E.G. Kozlova O.V.;
Page : 403-411
Keywords : Miscanthus; bioethanol; cellulose; raw materials; processing;
Abstract
The increasing shortage of fossil hydrocarbon fuel dictates the need to search for and develop alternative energy sources, including plant biomass. This paper is devoted to the study of the Miscanthus plants biomass potential and the analysis of technologies of its processing into products targeted at bioenergy, chemistry, and microbiology. Miscanthus is a promising renewable raw material to replace wood raw materials for the production of chemical, fuel, energy, and microbiological industries. Miscanthus is characterised by highly productive (up to 40 tons per one hectare of dry matter) C4-photosynthesis. Dry Miscanthus contains 47.1–49.7% carbon, 5.38–5.92% hydrogen, and 41.4–44.6% oxygen. The mineral composition includes K, Cl, N and S, which influence the processes occurring during biomass combustion. The total amount of extractives per dry substance lies in the range of 0.3–2.2 % for different extraction reagents. Miscanthus has optimal properties as an energy source. Miscanthus × giganteus pellets showed the energy value of about 29 kJ/g. For the bioconversion of plants into bioethanol, it is advisable to carry out simultaneous saccharification and fermentation, thus reducing the duration of process steps and energy costs. Miscanthus cellulose is of high quality and can be used for the synthesis of new products. Further research will focus on the selection of rational parameters for processing miscanthus biomass into products with improved physical and chemical characteristics: bioethanol, pellets, industrial cellulose, bacterial cellulose, carbohydrate substrate.
Other Latest Articles
- Raw poultry meatballs with soya flour: Shelf life and nutritional value
- Dietary fibres in preventative meat products
- Effect of pre-treatment conditions on the antiatherogenic potential of freeze-dried oyster mushrooms
- DNA authentication of brewery products: basic principles and methodological approaches
- Comparative evaluation of approaches to modelling kinetics of microbial thermal death as in the case of Alicyclobacillus acidoterrestris
Last modified: 2019-10-28 19:03:15