ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Data Mining and Data Warehousing

Journal: International Journal of Engineering Sciences & Research Technology (IJESRT) (Vol.3, No. 11)

Publication Date:

Authors : ; ;

Page : 109-111

Keywords : s: Data mining; Data warehousing .;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Today in organizations, the developments in the transaction processing technology requires that, amount and rate of data capture should match the speed of processing of the data into information which can be utilized for decision making. A data warehouse is a subject- oriented, integrated, time-variant and non-volatile collection of data that is required for decision making process. Data mining involves the use of various data analysis tools to discover new facts, valid patterns and relationships in large data sets. The data warehouse supports on-line analytical processing (OLAP), the functional and performance requirements of which are quite different from those of the on-line transaction processing (OLTP) applications traditionally supported by the operational databases. Data warehouses provide on-line analytical processing (OLAP) tools for the interactive analysis of multidimensional data of varied granularities, which facilitates effective data mining. Data warehousing and on-line analytical processing (OLAP) are essential elements of decision support, which has increasingly become a focus of the database industry. OLTP is customer-oriented and is used for transaction and query processing by clerks, clients and information technology professionals. An OLAP system is market-oriented and is used for data analysis by knowledge workers, including managers, executives and analysts. Data warehousing and OLAP have emerged as leading technologies that facilitate data storage, organization and then, significant retrieval. Decision support places some rather different requirements on database technology compared to traditional on-line transaction processing applications.

Last modified: 2014-11-18 22:06:44