Forensic Data Analysis as A Problem of Pattern Recognition ? An Empirical Study
Journal: Science and Technology International Research Journal (Vol.1, No. 1)Publication Date: 2014-11-15
Authors : L. Naga Rajeev;
Page : 27-31
Keywords : Biometrics; Linear Classifiers; Gray Level Co-occurrence Matrix;
Abstract
A latent fingerprint, a drop of blood, hair is the successful forensic clues used to catch criminals for decades. The criminals are identified by matching the clues with their physiological characteristics. Pattern Recognition is a process of matching a sample to determine the category/group/class to which it belongs to. This work concentrates on classification of fingerprints. We extracted features of fingerprints using co-occurrence matrices and compared the performance of classifiers KNN and SVM. Experiments are conducted on 384 fingerprints and observed that SVM performs well when compared to KNN.
Other Latest Articles
- Experimental Investigation and Simulation Study on Electrical Energy Consumption in Mine Drive Haulage System
- ТЕОРЕТИКО ? МЕТОДОЛОГІЧНІ ТА МЕТОДИЧНІ ЗАСАДИ ФОРМУВАННЯ КУЛЬТУРИ НАВЧАЛЬНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ (ПОЧАТОК)
- Determination of Molybdenum in Environmental Samples of Diverse Matrices by Flame Atomic Absorption Spectrometry
- ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ КОНЦЕССИОННОГО МЕХАНИЗМА СТИМУЛИРОВАНИЯ ИНВЕСТИЦИОННОЙ ДЕЯТЕЛЬНОСТИ В СФЕРЕ ЖКХ
- Design and Development of Optimum Lighting Parameters for Street Light Using LED’s Using MATLAB Software Program and Also Compared Practical Field Data With MATLAB Output - A Case Study
Last modified: 2015-02-07 21:13:34