Monomial Dynamical Systems in # P-complete
Journal: Mathematical Journal of Interdisciplinary Sciences (Vol.1, No. 1)Publication Date: 2012-07-02
Authors : Jang-Woo Park; Shuhong Gao;
Page : 87-94
Keywords : Laubenbacher; Sturmfels; dynamical systems; #P-complete; boolean monomial dynamics;
Abstract
In this paper, we study boolean monomial dynamical systems. Colón-Reyes, Jarrah, Laubenbacher, and Sturmfels(2006) studied fixed point structure of boolean monomial dynamical systems of f by associating the dynamical systems of f with its dependency graph χf and Jarrah, Laubenbacher, and Veliz-Cuba(2010) extended it and presented lower and upper bound for the number of cycles of a given length for general boolean monomial dynamics. But, it is even difficult to determine the exact number of fixed points of boolean monomial dynamics. We show that the problem of counting fixed points of a boolean monomial dynamical systems is #P-complete, for which no efficient algorithm is known. This is proved by a 1-1 correspondence between fixed points of f sand antichains of the poset of strongly connected components of χf..
Other Latest Articles
- A Note on Maximality of Ideal-independent Sets
- A Single Server Retrial Queue with Impatient Customers
- АНАЛІЗ ПРОБЛЕМИ ПРИСВОЄННЯ ПРИБУТКУ НА ПІДПРИЄМСТВАХ З КОЛЕКТИВНОЮ ФОРМОЮ ВЛАСНОСТІ
- НАПРЯМИ ОПТИМІЗАЦІЇ ФОРМУВАННЯ ДОХОДІВ МІСЦЕВИХ БЮДЖЕТІВ
- ДЕЯКІ АСПЕКТИ УПРАВЛІНСЬКОГО ОБЛІКУ У СІЛЬСЬКОМУ ГОСПОДАРСТВІ
Last modified: 2015-06-02 23:09:24