ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Photoluminescence and Photo-Catalytic Activity of Synthesized Nanocrystals

Journal: Journal on Today's Ideas - Tomorrow's Technologies (Vol.1, No. 1)

Publication Date:

Authors : ; ; ; ;

Page : 15-28

Keywords : Nanocrystals; Crystallography; Morphology; Photoluminescence; Photocatalytic activity.;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Intrinsic and extrinsic semiconductor nanostructures have attracted great attention due to their size tunable photo-physical and photo-chemical properties. In the present paper, polyvinyl pyrrolidone (PVP) capped Zn1-xEuxS (0.00001?x?0.1) nanocrystals have been synthesized by means of a facile chemical synthesis method. Crystallography and morphology of synthesized materials have been deliberated using X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. Diffraction and electron micrograph studies reveal that the synthesized materials are zinc blende nanocrystals having average particle size ~3nm. Elemental and compositional analyses of the nanocrystals have been done using energy dispersive X-ray fluorescence (EDXRF) technique. Steady state photoluminescence spectra have been recorded for optical characterization of synthesized nanomaterials. Photocatalytic activity potential of synthesized nanomaterials under UV radiation exposure has been investigated using methylene blue (MB) dye as a test contaminant in aqueous media. Photo-physical and photo-chemical behaviour dependence on doping concentration has been described in detail. Moreover, the sophistication of competition between charge carrier recombination and charge carrier trapping followed by the competition between recombination of trapped carriers and interfacial charge transfer processes have been presented in a fantastic and elaborative way by comparative study of photoluminescence and photo-catalytic activity results.

Last modified: 2016-04-27 15:25:43