ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

Performance of sedimentation tanks in a recirculating system for tilapia production

Journal: REVISTA MVZ CÓRDOBA (Vol.18, No. 2)

Publication Date:

Authors : ; ;

Page : 3492-3500

Keywords : Aquaculture; gravimetry; recirculation; tilapia; RAS;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

Objective. To compare the removal efficiency of solids, turbidity and apparent color between a conventional and a column settling tanks in a recirculating aquaculture system (RAS) for tilapia farming. Materials and methods. Tilapia with a stocking density between 30 and 33 kg/m3 were cultured in a RAS consisting of a water level control box, PVC piping system, three plastic tanks for culture, conventional horizontal flow settling tank (Con.ST), column vertical flow settling tank (Col.ST), three phase fluidized bed reactor, oxygen transfer reactor, air compressor, air blower, centrifugal pump. The Con.ST operated at a volume of 1.4 m3 and hydraulic retention time (HRT) of 2.94 h; and was drained weekly for washing and sludge collection, representing a 55%discharge of system water volume. The Col.ST operated with a volume of 0.30 m3 and HRT of 0.553 h. Three daily partial draining operations were executed, representing a discharge of 50% of the system volume. Results. The mean solids removal efficiencies were: 34.01 and 44.44%for total solids; 64.45 and 71.71% for suspended solids; 21.10 and 45.65% volatile solids; 65.51% and 62.79% for turbidity; and 56.37 and 50.91% for apparent color, respectively for Con.ST and Col.ST. Conclusions. The two settling devices are useful on removal of the studied parameters and presented similar performance on turbidity and apparent color removal; however, the Col.ST was more efficient than Con.ST for solids removal, requires less space, less volume and requires less discharge water volume, displaying feasibility for its use on RAS.

Last modified: 2016-06-29 01:57:22