MODÉLISATION ET RÉSOLUTION NUMÉRIQUE DE L'ÉQUATION DE POISSON EN 2D PAR LA MÉTHODE DE DIFFÉRENCE FINI CAS DE L'ÉQUATION DU TRANSFERT DE LA CHALEUR
Journal: International Journal of Chemical and Petroleum Sciences (Vol.1, No. 1)Publication Date: 2012-12-31
Authors : N.E. Benhissen A. Khechekhouche;
Page : 1-9
Keywords : Poisson equation; 2D; Simulation; Equation of heat transfer.;
Abstract
The objective of this work is to solve the Poisson equation by the finite difference method is therefore to provide an approximate solution of the actual behavior of a physical phenomenon. Such as the equation of heat transfer. We will take as a model of square/rectangular plate, with different boundary conditions and we will specify also the values boundaries (the Dirichlet condition). The analysis is based on the simulation results based on certain criteria and choice of parameters that comes into play in the equation, this will give us a good understanding of the manipulation of these parameters and thus understand what is happening on environment studied
Other Latest Articles
- Ilıca Koyu (Çeşme-İzmir) Bentik Foraminifer-Ostrakod Toplulukları ile Pasifik Okyanusu ve Kızıldeniz Kökenli Göçmen Foraminiferler ve Anormal Bireyler
- Kuzeybatı Anadolu Halloysit/Kaolinitlerinin Karakterizasyon Çalışmaları
- Karaburun Yarımadası Kuzey Kıyılarının Oşinografik Özelliklerinin Bentik Foraminifer ve Ostrakod Toplulukları Üzeindeki Etkileri
- BEYKOZ, ŞİLE VE KURTDOĞMUŞ (İSTANBUL, TÜRKİYE) YÖRELERİNDEKİ ERKEN-ORTA DEVONİYEN YAŞLI BİRİMLERİN KONODONT FAUNASI VE BİYOSTRATİGRAFİSİ
- Antidiabetic Activity of Ethanolic extract of Premna Tomentosa Root in Rat Model
Last modified: 2013-01-19 16:40:45