ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login


Journal: Indian Drugs (Vol.51, No. 7)

Publication Date:

Authors : ;

Page : 31-38

Keywords : Email:;

Source : Downloadexternal Find it from : Google Scholarexternal


The main aim of the present work was to formulate and evaluate sustained release multiparticulate gastroretentive delivery system of cinnarizine. The microspheres were prepared by solvent evaporation method by using Eudragit RS 100 as a polymer in varying ratios. The prepared microspheres were evaluated for drug – polymer compatibility studies, micromeritic properties, drug entrapment efficiency, in vitro buoyancy and drug release studies. The mean particle size increased with increase in polymer concentration, ranging between 60.33 μm to 144.88 μm. FT IR studies showed that the drug and polymer were compatible with each other. The entrapment efficiency decreased with increase in the polymer concentration with values of 50%, 33.3% and 25% respectively. The microspheres floated upto 9 h over the surface of the gastric buffer medium and the buoyancy percentage was found to be in the range of 64.3 – 76.2%. In vitro drug release studies showed that the prepared microspheres exhibited prolonged drug release upto 62.89% for more than 9 h. The mechanism of drug release was found to be a combination of both peppas and matrix kinetics. Thus the developed floating microspheres of cinnarizine may be used as sustained drug delivery system for increasing the therapeutic efficacy with an improved patient compliance.

Last modified: 2020-06-10 17:36:46