ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

THE CHOICE OF SORBENT FOR ADSORPTION EXTRACTION OF CHLOROFORM FROM DRINKING WATER

Journal: "Foods and Raw materials" Journal (Vol.5, No. 2)

Publication Date:

Authors : ;

Page : 189-196

Keywords : Adsorption; active carbons; polymeric sorbents; chloroform;

Source : Downloadexternal Find it from : Google Scholarexternal

Abstract

At present, providing the population with clean drinking water is one of the most important urgent problems of our time. Due to seasonal changes in water composition and violation of water treatment technology, the conventional process is not always effective to ensure water purification of organic compounds. Moreover, more hazardous contaminants may form unlike the previous ones. Humic substances act as the main source of chloroform formation for water decontamination during the water treatment. Adsorption chloroform extraction from water was studied under static conditions using KAU, SKD-515, BAU, AG-3, AG-OV-1 carbon, ABG semi-coke, PFS polymer sorbents and Porolas T and active nonwoven fabric that differ in the production method, structure and specific surface. Main regularities, features and mechanism for adsorption extraction of chloroform from water are identified for test sorbents. The Freundlich and Langmuir equations (theories of monomolecular adsorption), the Dubinin-Radushkevich equation, modified for adsorption from aquatic solution (theory of micro-pore bulk filling) and the BET equation (generalized theory of polymolecular adsorption of Brunauer, Emmett, and Teller) are used to define sorbents and calculate adsorption parameters. To study the potential to increase the sorbent adsorption capacity due variations in the surface structure and chemistry, sorbents were modified by hydrochloric acid solutions and sodium hydroxide. In absence of experimental studies, the technique is developed to define the limiting value of organic compound adsorption not interacting with surface functional groups of carbon sorbents with the developed system of micropores. The sorbent with the best adsorption properties regarding chloroform was recommended.

Last modified: 2018-04-12 17:01:27