COMPARACIÓN DE NUEVE ALGORITMOS DE MÁQUINAS DE APRENDIZAJE CON APLICACIONES EN LA DETECCIÓN DE ARRECIFE DE CORAL
Journal: Cumbres (Vol.1, No. 1)Publication Date: 2015-06-06
Authors : Eduardo Tusa; David Lane; Neil Robertson;
Page : 36-41
Keywords : OpenCV; coral reef; machine learning; Gabor Wavelet filters; texture descriptors;
Abstract
This work focuses on the comparison of nine machine learning algorithms for developing a coral reef detector. This detector has two parts: feature extraction that uses Gabor Wavelet filters, and feature classification that uses machine learning based on Neural Networks. We compare the accuracy and running time of nine machine learning algorithms, whose result was the selection of the Decision Trees algorithm. We implement the bank of Gabor Wavelets filters using C++ and the OpenCV library. We use a database of 621 images of coral reef in Belize (110 images for training and 511 images for testing). Our coral detector performs 70ms of running time with 70% of accuracy.
Other Latest Articles
- EL DESARROLLO Y DOMINIO DE LAS COMPETENCIAS CIENTIFICO ? PROFESIONALES DEL DOCENTE UNIVERSITARIO
- RETOS Y PERSPECTIVAS DE LA UNIVERSIDAD TÉCNICA DE MACHALA ANTE LA TRANSFORMACIÓN CURRICULAR DE LA EDUCACIÓN SUPERIOR ECUATORIANA
- DIAGNÓSTICO FITOSANITARIO Y RECOMENDACIONES DE MANEJO AGROECOLÓGICO DE PLAGAS EN COMUNAS DE LAS PROVINCIAS DE GUAYAS Y SANTA ELENA
- FUNDAMENTOS PARA EL EMPLEO EFICIENTE DE LOS FERTILIZANTES NITROGENADOS EN LA CAÑA DE AZÚCAR EN CUBA
- COMPARATIVE STUDY OF RELATIONAL AND NON-RELATIONS DATABASE PERFORMANCES USING ORACLE AND MONGODB SYSTEMS
Last modified: 2016-08-10 06:11:48