A class of primal-dual interior-point methods for convex quadratic optimization based on a parametric kernel function with a trigonometric barrier term
Journal: Global Journal of Mathematics (GJM) (Vol.4, No. 1)Publication Date: 2015-09-01
Authors : Jia Gu; Shuang Wang; Jinwei Yang;
Page : 389-397
Keywords : Interior-point methods; Convex quadratic optimization; Large- and small-update methods; Polynomial complexity.;
Abstract
In this paper, a class of large- and small-update primal-dual interior-point methods for convex quadratic optimization based on a parametric kernel function with a trigonometric barrier term is proposed. By utilizing the feature of the parametric kernel function, we establish the worst case iteration bounds for both versions of the kernel-based interior-point methods, namely, ? ? 3 2 O n log(n /? ) andO? n log(n /? )? , respectively. These results match the ones obtained in the linear optimization case.
Other Latest Articles
- British Policy in the Middle East: the British Mission in Daghestan. 1918-1919 (Yakın Doğuda Britanya Politikası: Dağıstan’da İngiliz Misyonu (1918-1919))
- Sivas Teachers College (Sivas Öğretmen Koleji)
- The North Caucasus in the Ottoman-Russian Rivalry: On the Way to Self-Identification (Северный Кавказ в Османо-Российском соперничестве: на пути к самоидентификации.)
- General Features of Educational Service System, and Problem Areas in Azerbaijan (AZERBAYCAN’DA EĞİTİM HİZMETLERİ SUNUMUNUN GENEL ÖZELLİKLERİ VE SORUN ALANLARI)
- Socio-Cultural Dynamics of Korea Economic Development: Neo Statist Approach (KORE EKONOMİK GELİŞİMİNİN SOSYO-KÜLTÜREL DİNAMİKLERİ:YENİ-DEVLETÇİ YAKLAŞIM)
Last modified: 2015-10-06 16:03:42